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Abstract. Sacrificial anodes cathodic protection (SACP) are a well-known technique widely used to protect

different metallic structures. In the case analyzed, the internal maintenance of ANCAP (Uruguayan Petroleum

State-owned Company) oil tanks required the re-design of their SACP. The system design implies assign the

anodic material and calculate the mass number of anodes. Their position is usually determined by empiric

methods or partially based corrosion potential distribution theory. Herein, we present a development of calculus

for the sacrificial anodes position to ensure the total roof surface protection. In order to determine the location

and number of the anodes, we started considering a mass balance which was later transformed into a charge

balance. After several transformations the mathematical model resulted into an elliptic PDE problem, expressed

in cylindrical coordinates with non-linear boundary conditions. The original problem was simplified by using the

piecewise linearization method and applying Frumkin condition that allowed assuming unidirectional charge flux.

Following these ideas, the original PDE problem was converted into a second order ODE with variable coefficients

which can be solved by using power series. Taking into account the previous analysis, an iterative process was

proposed to calculate the radius of the sacrificial anodes to be installed.
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1 Introduction

Sacrificial anodes cathodic protection (SACP) are a well-known technique widely used to protect
different metallic structures. In the case studied here, the internal maintenance of ANCAP
(Uruguayan Petroleum State-owned Company) oil tanks required the re-design of their SACP
(Campo et al., 2017). The Terminal del Este tank farm is located in the east coast of Uruguay,
near the cape named Punta José Ignacio, in the Atlantic Ocean just northeastward of the famous
watering place Punta del Este. The terminal belongs to ANCAP and it has several roof oil
tanks which maintenance requires the design of their cathodic protection. The oil is not an ionic
conductor, although the tank bottom accumulates water precedent of the pump process or the
oil segregation. This condition implies corrosive conditions whose must be controlled by periodic
water purge, corrosion inhibitors dosing or cathodic protection application. It is important to
mention that, the cathodic application design implies to assign the anodic material and calculate
the mass and number of anodes, which position will be determined in this article by using a
mathematical model. After several transformations this model results into an elliptic PDE
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problem, expressed in cylindrical coordinates with non-linear boundary conditions (Ohanian et
al., 2014; Martinez-Luaces et al., 2018). Under certain circumstances the original problem can
be simplified and converted into a second order ODE with variable coefficients which can be
solved by using power series.

In this paper, we develop a mathematical model, we solve analytically the differential equa-
tions problem and we propose an iterative process to calculate the radius of the sacrificial anodes
in order to ensure the total surface protection.

2 The mathematical model

The mathematical model is developed in order to evaluate the distribution of anodes inside the
tank. A mass balance is carried out in a control volume (Ibl, 1983) within the electrolyte, giving
for the species i the equation (1).

∂ci
∂t

= −∇ · Ji +Ri. (1)

The global balance for all the species can be written as:

∂
∑

i ci
∂t

= −∇ · (
∑
i

Ji) +
∑
i

Ri. (2)

Multiplying the equation terms by the species charges (z) and also by the Faraday constant F ,
we obtain the following charge balance:

F
∂
∑

i zici
∂t

= −∇ · (F
∑
i

ziJi) + F
∑
i

ziRi. (3)

In this case, we consider an electrochemical system with reaction at the interface and then it
can be assumed that there is no generation in the control volume, so the term Ri is zero and
due to the steady-state condition, the left term of Equation (3) is also null, resulting:

∇ · (F
∑
i

ziJi) = ∇ · j = 0. (4)

Being j the current density vector. Expanding j taking into account migration, diffusion and
advection (Newman, 1968) we have the following equation:

∇ · j = −∇ · (
∑
i

|zi|uici∇E)−∇ · (F
∑
i

Dizi∇ci) +∇ · (Fv
∑
i

zici) = 0. (5)

In this equation ui is the ionic mobility, Di is the diffusivity of species i and v is the local velocity
of the fluid.

The solution can be considered an isotropic medium, therefore the ionic conductivity and
the diffusivity of the species are homogeneous properties and so they have a null gradient. Then,
Equation (5) is simplified to give:

∇ · j = −χ∇2E − F
∑
i

Dizi∇2ci +∇ · (Fv
∑
i

zici) = 0. (6)

Being χ the electrolyte conductivity.

In the electrolyte the convective term is null due to the condition of electro neutrality and
so, we can write:

∇ · j = −χ∇2E − F
∑
i

Dizi∇2ci = 0. (7)
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In primary or secondary current distributions, we can assume that there is no concentration
gradient and then, the last equation can be simplified to give:

∇ · j = −χ∇2E = 0. (8)

And then

∇2E = 0. (9)

In our system, a cylindrical tank with D = 60 m and h = 0.015 m (average height of present
electrolyte) it is more convenient to use cylindrical coordinates (Zill & Cullen, 2009), so we have:

∂2E

∂r2
+

1

r

∂E

∂r
+

1

r2
∂2E

∂θ2
+
∂2E

∂z2
= 0. (10)

Due to symmetrical reasons, the derivatives with respect to the polar argument θ can be canceled
to give this new equation:

∂2E

∂r2
+

1

r

∂E

∂r
+
∂2E

∂z2
= 0. (11)

Besides, for symmetrical reasons there is no flux at the center of the tank, then

∂E

∂r
|r=0 = 0. (12)

The other boundary condition is given by polarization curves (electrochemical potential vs.
current density) obtained in the laboratory and piecewise linearized. Finally, another boundary
condition is obtained in the interface oil/water where there is no flux, and so:

∂E

∂z
= 0, evaluated at z = L. (13)

In this system the Frumkin condition (Martinez-Luaces et al., 1949) for unidirectional flux is
satisfied and so, the differential equation can be written as:

∂2E

∂r2
+

1

r

∂E

∂r
= 0. (14)

If this equation is written in terms of electrochemical potential (µ), we have:

∂2µ

∂r2
+
1

r

∂µ

∂r
= ±iS

2ρ

L
. (15)

Being iS the normal current to the metallic surface.
The piecewise linearization of the boundary condition gives us the following:

∂µ

∂z
|z=0 = is = a+ bµ. (16)

The change of variable x = r
R allows writing the differential equation as:

∂2µ

∂x2
+
1

x

∂µ

∂x
= ±

(a
b
+µ
) bR22ρ

L
. (17)

This equation has the form:

y
′′
+
1

x
y
′−Ky = AK. (18)

In Equation (18) we defined bR22ρ
L = K and a

b= A where both depend on the piecewise lin-
earization of the experimental polarization curves, geometric characteristics and the medium
conductivity.
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3 The ODE analytical solution

The homogeneous ODE corresponding to equation (18) is

y
′′
+
1

x
y
′−Ky = 0. (19)

We propose a solution (Somasundaram, 2001) of the form:

y(x) =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + . . . (20)

If y(x) is substituted into equation (19) we obtain:(
2a2 + 6a3x+ 12a4x

2 + . . .
)
+ 1

x

(
a1 + 2a2x+ 3a3x

2 + 4a4x
3 + . . .

)
−K

(
a0 + a1x+ a2x

2 + a3x
3 + . . .

)
= 0.

(21)

Rearranging we have:

a1
x + (4a2 −Ka0) + (9a3 −Ka1)x+ (16a4 −Ka2)x

2 + (25a5 −Ka3)x
3

+(36a6 −Ka4)x
4 + . . . = 0.

(22)

From equation (22) it can be obtained an equation system for the odd numbers:
a1 = 0
9a3 −Ka1 = 0
25a5 −Ka3 = 0
...

(23)

From this system it follows that

a1 = a3 = a5 = . . . = 0. (24)

From equation (22) it follows a different system for the even numbers:
4a2 −Ka0 = 0
16a4 −Ka2 = 0
36a6 −Ka4 = 0
...

(25)

Then we have:

a2 =
K

4
a0 , a4 =

K

16
a2 , a6 =

K

36
a4 , a8 =

K

64
a6 , . . . . (26)

So, the corresponding recursive equation is:

a2n =
K

(2n)2
a2n−2. (27)

Substituting we have

a2 =
K

22
a0 , a4 =

K2

2242
a0 , a6 =

K3

224262
a0 , a8 =

K4

22426282
a0 , . . . . (28)

And the general form can be written as:

a2n =
Kn

[(2n) !!]2
a0. (29)
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Where the double factorial is:

(2n)!! = (2n) (2n− 2) (2n− 4) . . . 2. (30)

Then, combining the previous results we obtain the following solution of the homogeneous ODE:

y(x) = a0 +

∞∑
n=1

Kn

[(2n)!!]2
a0x

2n = a0

(
1 +

∞∑
n=1

Kn

[(2n)!!]2
x2n

)
= a0φ (x)

being

φ(x) = 1 +

∞∑
n=1

Kn

[(2n)!!]2
x2n. (31)

Another independent solution can be obtained by using the change of variables:

y(x) = φ (x)u (x) .

Then:

y′(x) = φ′ (x)u (x) + φ (x)u′ (x)

y′′(x) = φ′′ (x)u (x) + 2φ′ (x)u′ (x) + φ (x)u′′ (x) . (32)

Replacing these results in the homogeneous equation (19) we obtain:

y′′(x) + 1
xy

′ (x)−Ky (x) = φ′′ (x)u (x) + 2φ′ (x)u′ (x) + φ (x)u′′ (x)+

+
1

x

[
φ′ (x)u (x) + φ (x)u′ (x)

]
−Kφ (x)u (x) = 0.

(33)

Rearranging terms this equation can be written as:

u (x)
[
φ′′ (x) + 1

xφ
′ (x)−Kφ (x)

]
+ 2φ′ (x)u′ (x) + φ (x)u′′ (x)+

+
1

x
φ (x)u′ (x) = 0.

(34)

Since φ (x) is a solution of equation (19) the first term is zero and equation (34) can be written
as:

φ (x)u′′ (x) +

[
2φ′ (x) +

1

x
φ (x)

]
u′ (x) = 0. (35)

Equation (35) is a separable differential equation, as it can be observed in the following ODE,

φ (x)
d

dx
z (x) = −

[
2φ′ (x) +

1

x
φ (x)

]
z (x) (36)

where u′ (x) was replaced by z (x).

The solution of equation (36) is

ln [z (x)] = −
∫ (

2
φ′ (x)

φ (x)
+

1

x

)
dx = −2 ln [φ (x)]− ln (x) = ln

[
1

xφ2 (x)

]
. (37)

Then, it can be written that

z (x) =
1

xφ2 (x)
(38)
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and since z (x) is the same as u′ (x) , it follows that

u (x) =

∫ (
1

xφ2 (x)

)
dx (39)

and so, the other independent solution of Equation (19) is

ψ (x) = φ (x)

∫ (
1

xφ2 (x)

)
dx. (40)

Finally, the non homogeneous ODE (18) has an obvious constant solution:

y(x) = −A. (41)

Then, combining the previous results we obtain:

y(x) = −A+ c1φ (x) + c2ψ (x) . (42)

Which is the general solution for equation (18) being:

φ(x) = 1 +

∞∑
n=1

Kn

[(2n)!!]2
x2n (see 31)

and

ψ (x) = φ (x)

∫ (
1

xφ2 (x)

)
dx (see 40).

4 Approximating the analytical solution

The analytical solution, given by equation (42) needs to be approximated for its practical use.
The dimensionless variable x is positive and: x = r

R << 1, the power series (31) shows a
fast convergence and

φ(x) = 1 +
∞∑
n=1

Kn

[(2n)!!]2
x2n ≈ 1 +

K

4
x2 (43)

then it can be written that:

xφ2(x) ≈ x

(
1 +

K

4
x2
)2

= x+
K

2
x3 +

K2

16
x5. (44)

In order to obtain the integrand of (see 40)

ψ (x) = φ (x)

∫ (
1

xφ2 (x)

)
dx

the long division method yields:

1

xφ2(x)
≈ 1

x+ K
2 x

3 + K2

16 x
5
=

1

x
− K

2
x+

3K2

16
x3 + . . . . (45)

Then

ψ (x) = φ (x)

∫ (
1

xφ2 (x)

)
dx ≈

(
1 +

K

4
x2
)∫ (

1

x
− K

2
x+

3K2

16
x3 + . . .

)
dx (46)

or

ψ (x) ≈
(
1 +

K

4
x2
)(

ln (x)− K

4
x2 +

3K2

64
x4 + . . .

)
(47)
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and, if we delete powers greater than x2, then the truncated series for series ψ (x) is the following:

ψ (x) ≈ ln (x)− K

4
x2 +

K

4
x2 ln (x) . (48)

Taking into account the previous results, the approximated solution can be written as:

y (x) ≈ c1

(
1 +

K

4
x2
)
+ c2

(
ln (x)− K

4
x2 +

K

4
x2 ln (x)

)
−A. (49)

The boundary conditions are y (xi) = y (Zn) for i = 0 , 1 since zinc electrodes are put at radius
r0and r1. These boundary conditions can be used to calculate constants c1and c2, obtaining:

c1 = [y (Zn) +A]
ψ (x1)− ψ (x0)

φ (x0)ψ (x1)− ψ (x0)φ (x1)

and

c2 = [y (Zn) +A]
φ (x0)− φ (x1)

φ (x0)ψ (x1)− ψ (x0)φ (x1)
. (50)

The obtained results, i.e. c1 and c2, are substituted in equation (49) which gives the potential
for all radius between r0 and r1. The same procedure can be followed for radius between r1 and
r2, between r2 and r3, etc., and the equation is solved approximately for all the tank.

5 Conclusion

Taking into consideration the previous equations and the experimental results– particularly the
polarization curves – several proposals (see Table 1) were included in a technical report (Campo
et al., 2017), being the most relevant for this article the ones about number and location of the
sacrificial anodes. These recommendations can be visualized in Table 1.

Table 1: Diameters suggested for the anodes location and number of electrodes

Annulus diameter (m) number of aluminum anodes number of zinc anodes
16 12 17
36 48 67
54 90 100

Indeed, at present, after the design and development, our method is implemented in ANCAP,
in the Terminal del Este tank farm. We are confident that further tests confirm that the present
findings might help to solve the problem.

Beyond the particular ANCAP corrosion problem, our studies may improve knowledge about
corrosion protection for roof oil tanks.
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